Surfaces of constant mean curvature in manifolds of constant curvature
نویسندگان
چکیده
منابع مشابه
New Constant Mean Curvature Surfaces
We use the DPW construction [5] to present three new classes of immersed CMC cylinders, each of which includes surfaces with umbilics. The first class consists of cylinders with one end asymptotic to a Delaunay surface. The second class presents surfaces with a closed planar geodesic. In the third class each surface has a closed curve of points with a common tangent plane. An appendix, by the t...
متن کاملCoplanar Constant Mean Curvature Surfaces
We consider constant mean curvature surfaces with finite topology, properly embedded in three-space in the sense of Alexandrov. Such surfaces with three ends and genus zero were constructed and completely classified by the authors [GKS2, GKS1]. Here we extend the arguments to the case of an arbitrary number of ends, under the assumption that the asymptotic axes of the ends lie in a common plane...
متن کاملPolyhedral Surfaces of Constant Mean Curvature
way, say, by assigning a length to each edge which fulÞlls the triangle identity on each triangle. In a locally Euclidean metric the distance between two points is measured along curves whose length is measured segment-wise on the open edges and triangles: DeÞnition 15 A curve γ on a simplicial complex M is called rectiÞable, if for every simplex σ ∈ M the part γ|σ is rectiÞable w.r.t. to the s...
متن کاملDelaunay Ends of Constant Mean Curvature Surfaces
We use the generalized Weierstrass representation to analyze the asymptotic behavior of a constant mean curvature surface that locally arises from an ODE with a regular singularity. We show that if system is a perturbation of that of a Delaunay surface, then the corresponding constant mean curvature surface has a properly immersed end that is asymptotically Delaunay. Furthermore, that end is em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1973
ISSN: 0022-040X
DOI: 10.4310/jdg/1214431490